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Abstract—The use of software has become ubiquitous and
prevalent in modern medical devices such as hemodialysis
machines. Consequently, the failure rate of medical devices
due to software faults is also increasing. While next-generation
software-intensive medical devices contribute to providing better
health care and ease of use, their development is becoming
unprecedentedly complex and challenging. The critical nature
of this domain – particularly its direct implications on health
and safety – requires extraordinary measures to ensure the
correct and reliable function of such systems. Formal methods are
proven to provide approaches, techniques, and tools for correct
engineering of software and systems. However, their use in the
contemporary medical software engineering is still marginal.
In order to promote the use of (state-based) formal methods
and showcase their effectiveness in design and development of
critical medical devices, we present the hemodialysis case study
challenge problem in this article. We also analyze the novelties
and limitations of several solutions implementing the case study
and explore research challenges that still need to be addressed
in future.

I. INTRODUCTION

While medical devices are increasingly becoming advanced,

sophisticated, and software-intensive, due to the immaterial

nature of software and their complexity, the development and

certification of medical devices is becoming a fundamental

issue. Most traditional software engineering methods cannot

guarantee the correct functioning of software systems and this

is not acceptable in this domain. Certification is the process

where a regulatory authority evaluates the safety and fitness

of a medical device for public use. Contemporary approaches

for certifying a medical device typically include premarket

approval and postmarketing surveillance. Premarket approval

is a process where manufacturers are required to demonstrate

the safety and effectiveness of a medical device to a regulatory

authority prior to its introduction to the market. Postmarketing

surveillance is the process that demands the development

and demonstration of vigilance procedures to identify poten-

tial hazards with the deployed medical equipment. Actually,

clinical trials are not always sufficient for a detailed and

comprehensive analysis of a medical device.

This work is partially supported by the Austrian Ministry for Transport,
Innovation and Technology, the Federal Ministry of Science, Research and
Economy, and the Province of Upper Austria in the frame of the COMET
center SCCH.

Although stringent mechanisms already exist to control the

overall quality of medical devices, numerous accidents have

been reported and several of them resulted due to software

errors. After carefully examining the recalls of defective

medical devices during the first half of 2010, Sandler et

al. [1] concluded that more than 25 percent of the problems

were attributed to software faults. Wallace et al. [2] present

analyses of software failures in medical devices, which are

noncritical in nature but lead to device recalls. The authors

recommended that formal specification of requirements and

improved processes for quality assurance should be used for

the engineering of complex medical software and systems.
One of the reasons for the increased software-related recalls

of medical devices is that the regulatory regimes responsible

for a medical device review are often constrained with a

problem of limited resources and large burdens [3]. In the

US, the Food and Drug Administration (FDA) is obliged to

review a device within 90 calendar days1 – a time frame that is

clearly insufficient for a detailed review given the ever growing

number of devices requiring clearance. Ironically, the review

itself is based on several thousands of written pages and does

not include the direct assessment of the device [4]. The onus

is on the device manufacturer to demonstrate that the device

is safe for public use.
Apart from human computer interaction errors, the rea-

sons behind several incidents with medical devices are the

inherent difficulties with performing four important steps in

the development process: 1) identify in advance all possible

hazardous situations; 2) identify safety requirements that can

mitigate identified hazardous situations; 3) verify a system

design against safety requirements; and 4) check that the

system implements correctly given design documents. While

risk and hazard analysis techniques, e.g., Failure Mode Effects

Analysis (FMEA) [5] and Fault Tree Analysis (FTA) [6], can

be used for steps 1 and 2, steps 3 and 4 can be effectively

addressed using formal methods.
Formal methods are rigorous techniques and tools based

on mathematics and logic for modeling, design and analysis

(verification and validation) of software and systems. Formal

methods enable specifiers to write unambiguous and consistent

1https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/
HowtoMarketYourDevice/PremarketSubmissions/PremarketNotification510k/
ucm070201.htm
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requirements and design specifications that can subsequently

be transformed into software. More specifically, formal meth-

ods are used to prove that critical properties hold, and cor-

rectness and conformance of a software implementation to

behavioral models expressing the core operations of a device

can be guaranteed. In state-based formal methods, system

specifications are expressed as a state model where mathe-

matical structures like sets and functions represent the state

and transitions among states define the model behavior. Some

of the well-known state-based formal methods are Abstract

State Machines [7], B [8], Event-B [9], and Z [10].
In order to promote a rigorous development approach and

to provide formal models that can be used by academia and

industry as a realistic workbench for demonstrating tools and

techniques for strengthening cybersecurity, functional safety,

reliability and usability of medical devices, some initiatives

have already been taken. McMaster’s Software Quality Re-

search Laboratory in cooperation with Boston Scientific has

made public the specification of an older pacemaker2. FDA

has also sponsored a pilot project on generic infusion pumps3.
Software Competence Center Hagenberg GmbH4 – an

industrial research facility based in Austria – has further

extended this initiative by proposing a hemodialysis machine

case study [11] and inviting researchers from academia and

industry to contribute with their solutions. The ultimate aim

of this initiative is: 1) to provide formal requirements and

architectural models that can be used by device manufacturers

early in their design process for safety analysis purposes, 2)

to demonstrate the efficacy of formal methods for design and

development of critical medical devices, and 3) to stimulate re-

search endeavors related to the application of formal methods

to safety- and security-critical medical devices.
The main goal of this article is to present the state of affairs

related to the formal development of hemodialysis machines.

We also examine (by highlighting novelties and limitations

of) some of the deployed (state-based) formal methods for

their capability to support the development of hemodialysis

machines in particular and consequently the overall medical

device software engineering process in general. We also dis-

cuss some challenges and future research directions within the

context of this paper.
The article is organized as follows: In Section II, we present

an overview of the hemodialysis process and discuss the

related case study. In Section III, we discuss the state-of-the-

art solutions implementing the case study. In Section IV, we

present an overview of research directions and challenges asso-

ciated with the formal development of hemodialysis machines.

The article is concluded in Section V.

II. HEMODIALYSIS CHALLENGE PROBLEM

A. The hemodialysis process
Kidneys are vital parts of a human body. Kidneys act as a

filtration system that purifies blood by removing waste prod-

2http://sqrl.mcmaster.ca/ SQRLDocuments/PACEMAKER.pdf
3https://rtg.cis.upenn.edu/gip
4https://www.scch.at

ucts and excess fluids. Additionally, kidneys balance chemicals

(e.g., sodium, potassium, calcium, and phosphorous) in the

blood, regulate the blood pressure, and stimulate the red

blood cells production. When kidneys fail, the body starts

accumulating unwanted toxic substances, the blood pressure

rises, and the volume of body water increases. When kidneys

stop working completely, an artificial process is needed to

replace their functionality.

Hemodialysis is an extra-corporeal blood purification pro-

cess and is the most popular treatment when the kidneys are

in a state of renal failure. In a typical hemodialysis therapy,

two needles are inserted into the patient’s arm. The blood

is drawn through the arterial puncture of the patient’s arm.

The blood then goes to the dialyzer by flowing through a

thin tube. A dialyzer is composed of many fine hollow fibers

which are made of semi-permeable membranes. While the

blood is flowing through these fibers, the dialysate (a chemical

substance) is mixed with the blood to remove its impurities and

excess water and to adjust its chemical balance. Once the blood

is cleansed and treated, it returns to the patient’s arm through

the venous access. A specific amount of blood is drawn outside

the body of the patient at a time. The therapy takes 3 to 6 hours

to complete and is performed on a regular basis. A professional

caregiver monitors the treatment for compliance and safety.

The hemodialysis process is briefly shown in Fig. 1.

Fig. 1. Working principle of hemodialysis machines

B. The challenge problem

In order to demonstrate the efficacy of formal techniques

and tools in managing complexity and improving reliability

of medical devices, we invite researchers to contribute to the

hemodialysis machine case study challenge. The ultimate goal

of the initiative is:

• to provide safe and reliable reference models that can be

used by the device manufacturers early in their design

process to verify critical properties,

• to establish assurance case arguments that can be used

for certification purposes,

• to promote the use of state-of-the-art formal methods

in design and development of safety-critical medical

devices, and

• to stimulate research and development activities related

to the application of formal methods to critical medical

devices.

The hemodialysis machine case study challenge is described

in [11]. It outlines machine’s basic functionality, its safety

conditions, and a top-level system architectural description. It
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describes how a typical hemodialysis therapy is performed that

is comprised of three main phases:

1) Therapy preparation that is used to set the treatment

parameters.

2) Therapy initiation that is used to physically connect the

patient to the machine and perform the dialysis.

3) Therapy ending that is used to finalize the hemodialysis

process by reinfusing the treated blood back to the

patient.

This document also describes eight general safety require-

ments (including human computer interaction requirements)

and 36 software safety requirements.

III. COMMUNITY RESPONSE

Since the inception of the hemodialysis case study chal-

lenge, we have already received several solutions in various

state-based formal methods. A few of the promising ones

are discussed and analyzed in this section. It is worth noting

that all these solutions succeeded in correctly formalizing the

problem, i.e., the provided language constructs, the expres-

siveness, the theory and foundation of the employed approach,

the adaptations, all were sufficient to model the problem at a

satisfactory level. However, the main issue stems from the tool

support associated with the employed formal methods, which

proved, at times, limited and far from the satisfactory level.

A. The Event-B solution

The first solution discussed here is presented by Hoang

et al. [12] and is based on a set of tools revolving around

the Event-B formalism. A similar Event-B inspired solution

is presented in [13], [14]. Event-B is a formal method for

systems and software engineering based on first-order predi-

cate logic and set theory. A model in Event-B is composed

of a state, invariants on the state, and a set of events defining

the transitions on the state. The model development scheme

associated with Event-B is based on formal refinement. The

syntax and semantics of Event-B are designed so that, for each

model, a set of independent proof obligations are generated.

The model is considered verified when all proof obligations

are discharged either interactively or automatically. The major

strength of Event-B stems from the fact that the proof of

correctness of the implementation is broken into many small

and relatively simple proofs which are spread out all over the

development process. The development of Event-B models is

supported by the Rodin Platform [15].

As the hemodialysis machine’s requirements involved ex-

tensive sequencing and dynamic interactions between the

hemodialysis machine and the operator, the specifiers mixed

the Event-B development with a Unified Modeling Language

(UML) like notation, iUML-B [16], to model the sequential

properties of the system, and ProB-based animation, visual-

ization and simulation tools [17] to analyze the behavior of

the model. In order to verify the safety constraints, the proof

capabilities of Event-B and a co-simulation of the closed-loop

parts of the controller with a continuous domain model of the

environment were exploited.

Fig. 2. Top level state machine representation of the model [12]

The solution model is specified using a refinement-based

approach. The abstract model contains the main phases of

the hemodialysis machine as shown in Fig. 2. It is then

subsequently strengthened using 15 different refinement levels,

each bringing new behaviors and safety requirements to the

model. The model first introduces the sequential processes of

hemodialysis machines using state-machines in the abstract

model and is then concretized into several smaller incremen-

tal steps. Safety Properties are introduced as state-machine

invariants. In order to validate the discrete behavior of the

machine, the techniques of animation and model checking

were used, whereas Domain Specific Visualizations (DSVs)

were created to validate the continuous behavior of the model.

Using the combination of animation, model checking and

DSVs, the complete behavior of the machine can be simulated

to even nontechnical stakeholders. For verification purposes,

the technique of deductive theorem proving was used. In this

technique, safety properties are defined as machine invariants

that must be preserved by functional behavior of the specifica-

tion. While most of the proofs were discharged automatically,

some of them required human interaction.

The main novelty of the approach is its usage of a multi-

formal development paradigm where the requirements are

modeled using the UML-like notation and then subsequently

verified in the formal framework of Event-B using the deduc-

tive theorem proving and model checking. The approach also

lets the specification be validated using animation and DSVs.

The main limitation of the Event-B approach, among others,

is that the available code generation tools, e.g., [18], [19] and

[20], are limited in functionality, only translate a subset of the

B syntax during the automated translation process and also

fail to establish that safety properties of the model remain

preserved during the translation process.

B. The Hybrid Event-B solution

The next solution discussed here is presented by Ba-

nach [21] and is based on Hybrid Event-B [22]. Hybrid

Event-B is an extension of the Event-B method to facilitate

designing of hybrid systems and complements Event-B by

providing means to explicitly focus on continuously varying

state evolutions. Like Event-B, a model in Hybrid Event-B is

also composed of a state, invariant on the state, and a set of

events defining the transitions on the state. However, Hybrid

Event-B supports two kinds of variables: mode variables and

pliant variables. While the former kind evolves via discrete
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assignments, the later one evolves continuously. There are

also two kinds of events supported by Hybrid Event-B. Mode

events, like traditional events in Event-B, update the state

instantaneously. Pliant events – newly introduced events in

Hybrid Event-B – capture the continuous evolution of the state

over a period of time, e.g., assignments are performed either

through solving an ordinary differential equation or through a

time-dependent expression. In Hybrid Event-B, time plays an

important role and all variables are functions of time implicitly

or explicitly. In Hybrid Event-B, the notion of time is read-

only in general but the concept of clocks can be used more

flexibly.

The Hybrid Event-B model of the hemodialysis machine

is developed using a simple component-based approach. The

model is composed of a central interface that stays in the center

of the development and provides all needed shared variables.

Four Event-B machines are specified in the model: Operator,

modeling essential elements of the operator; Control, modeling

the control system; BloodPump, modeling the behavior of

blood pump; and SafetyAirDetector, modeling the safety air

detector function that checks the blood in the tubing to be

sure that air does not get into the bloodstream. Verification

is achieved by expressing machine invariants and making

sure that the behavior preserves them. The overview of the

development architecture is shown in Fig. 3.

Fig. 3. Overview of the development architecture [21]

The development proceeds level by level. In the first level,

basic vocabulary is introduced. The second level introduces

the functionality of the blood pump. The third level introduces

the safety air detector component. The fourth level deals with

the preparation phase of dialysis that consists of rinsing and

filling the machine, and entrance of treatment parameters. The

initiation phase of the hemodialysis machine is modeled in

the fifth level. The arterial connection is modeled via operator

events. The filling of the blood tubing is performed by events

synchronized between the operator, control and the blood

pump. The treatment phase is modeled in the sixth level. The

seventh level models the therapy ending phase.

The main novelty of the approach comes from its ability

to explicitly distinguish between the discrete and continuous

elements of hemodialysis machines. The resulted specification

consists of two types of state transitions: the natural discrete

changes of state and continuously varying state changes. The

model takes the individual discrete events of hemodialysis

machines and interleaves them with continuous events. This al-

lows to specify the complete behavior of the model considering

both discrete as well as continuous elements of hemodialysis

machines. The limitation of the approach is the absence of

the native tool support for Hybrid Event-B. Hybrid Event-B

relies on the Rodin platform for specification and proving but

some features of Hybrid Event-B are not supported by the

Rodin platform, e.g., specification of continuously changing

behavior, support for single and multi-machine systems, and

continuous domain model checking.

C. The ASTD solution

The third solution discussed here is presented by Fayolle et

al. [23] and is based on Algebraic State Transition Diagrams

(ASTD) [24]. ASTD is a graphical notation that enables to

model problems using state transition diagrams and classical

process algebra. Actually, in ASTD, basic ingredients of

state transition diagrams, e.g., hierarchy, OR-states, AND-

states, guards, and history states, are fused with some notice-

able features of process algebra, e.g., event synchronization,

event traces, and environment-driven labeled transitions. While

ASTD is used in this solution to specify the correct ordering

of actions and to constrain the execution of events, the Event-

B method and its refinement-based development paradigm is

used to capture the data model and safety properties.

The model is specified using a refinement-based approach.

At the most abstract level, the three main phases of hemodial-

ysis machines are described, i.e., therapy preparation, therapy

initiation, and therapy ending. Then they are detailed in

subsequent refinements one at a time. The abstract level and

the first refinement is shown in Fig. 4. One of the latter

refinement levels is used to introduce failures in the system

and to describe how to deal with those failures if they occur.

(a) First specification level

(b) First refinement of ASTD specification

Fig. 4. Initial ASTDs of the hemodialysis machine model [23]

The main novelty of this approach comes from a multi-

formal development technique and the way how the sequenc-

ing order of the machine is described. Due to the use of a

graphical notation, the model is easy to follow and validate.

For verification purposes, the model relies on the strength

of the Event-B platform that stems from theorem proving

and model checking. However, this means that the approach

also suffers from the limitations associated with the Event-B

method and its tool-set, e.g., absence of an implicit notion of

time, absence of a mechanical proof that Event-B refinements

maintain system’s temporal properties, and poor quality of the

automatically generated code.
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D. The ASM solution

The next solution discussed here is presented by Arcaini

et al. [25] and is based on the Abstract State Machines

(ASM) method. The ASM method allows the engineering

of synchronous/asynchronous multi-agent systems from re-

quirements elicitation to their implementation. A typical ASM

model can also be seen as an intuitive form of abstract

pseudo-code. In this solution, the researchers used the Asmeta

framework [26] to model the behavior and properties of

hemodialysis machines.

The basis of the ASM method is provided by a rigorous

mathematical theory of finite state machines where states are

defined by arbitrarily complex data structures using functions.

State is made up of locations that are concrete values of

function parameters. The control flow is maintained through

conditional statements and a set of rule constructors that

defines state transitions by modifying the function values

at a finite number of locations. Derived functions, which

constitute an important auxiliary element in ASM models,

compute values from a combination of functions at runtime.

Two kinds of functions are supported by ASMs: static, that

never change during any run of the machine, and dynamic,

that are updated by agent actions. Additionally, functions are

either monitored, i.e., only read by the machine and modified

by the environment, or controlled, i.e., read and written by the

machine.

Fig. 5. The ASM ground model of the hemodialysis machine [25]

In the ground (the most abstract) model, as shown in Fig. 5,

specifiers simply describe the transitions among different

phases of hemodialysis machines. During the first refinement

step, the ground model is extended by including the details

of the preparation phase. The second refinement extends the

model with the initiation phase. The third refinement step

models the activities that are performed at the end of the

treatment, i.e., the behavior of the ending phase. In the last

refinement step, property verification and error handling is

performed.

Validation and Verification of the model are achieved by

employing multiple formal techniques. At first, the interactive

simulation is performed. During the interactive simulation,

values are provided to monitored functions of the machine

and the state computation is observed. The simulator, at

each step, monitors that all the updates are consistent. Then

a more powerful form of simulation is performed that is

called the scenario-based validation. It permits to automate

the simulation activity. A further quality assurance technique

of model review can then be applied to the model to examine

whether the model has some particular qualities that should

help in developing, maintaining, and enhancing it. As a last

quality assurance step, safety requirements of the system are

specified as Linear Temporal Logic (LTL) formulas and model

checked for verification purposes.

The main novelty of this solution comes from its rigorous

approach to quality assurance and easy to understand formal

notation [27]. The employed comprehensive model analysis

approach based on activities like model checking, simulation,

model review, testing, and conformance checking, stands out

among others as far as the notion of model correctness is

concerned. The limitation of the approach is that theorem

proving is ignored during the development and property veri-

fication is only performed using model checking. This may

not be sufficient for large, complex high-integrity medical

devices, such as hemodialysis machines, due to inherent prob-

lems associated with model checking, e.g., state explosion.

Additionally, only a limited-capability tool [28] is currently

available for automatic transformation of an ASM model into

a C++ programming language code – the translation works

currently only for Arduino platforms5.

E. The Circus solution

The last solution discussed in this article is presented by

Gomes et al. [29] and is based on Circus [30]. Circus is a

combination of the Z formal method, Communicating Sequen-

tial Processes (CSP) [31] and the refinement calculus [32].

It defines systems as processes where the structural part of

systems (state and invariants on the state) is described using

the Z method and the behavioral part (state transitions) using

CSP. While the specification style of Circus is inspired by Z,

CSP provides the communication aspects. A typical Circus

specification includes Z paragraphs, channel definitions and

declarations, and process definitions. Circus also features par-

allelism, choice, assignment statements, and control structures,

e.g., loops and conditions.

The solution starts with the modeling of hemodialysis

machine requirements as Circus actions using pre- and post-

conditions. Once all requirements are specified, then the

general behavior of the machine is described to check the

compliance. The functional behavior of the machine is defined

in terms of circus processes. The system is modeled as a

parallelism between the main therapy process and the require-

ments process. A second parallelism is modeled between the

aforementioned parallelism and another process describing the

state phases. The latter is a process that monitors the state

transitions through signals and later on sets the values of the

state variables to comply with the requirements process. Then

the components are put in parallel with the process responsible

for sensors readings. This is shown in Fig. 6. Finally, the entire

system is put in parallel with the process managing the timing

properties of the system.

The main novelty of the model is the use of a well-defined

theory of process algebra to specify concurrent and parallel

5https://www.arduino.cc/
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Fig. 6. The Circus model showing parallel processes of the solution [29]

aspects of the system. The explicit focus on timing properties

of hemodialysis machines is another point that distinguishes

this work among others. The main limitation of the approach

is that no tool currently exists that directly supports the con-

sistency and conformance checking of a Circus specification.

In the current solution, the Circus model is translated into a

machine-readable CSP which is then checked for verification

purposes by tools such as Failures Divergences Refinement

(FDR) [33]. Absence of tools for automatic code generation

from Circus models is another limitation.

IV. RESEARCH ROADMAP

In this section, we discuss the necessary outstanding issues

associated with the (formal) software development of medical

devices in general and hemodialysis machines in particular

that still need to be addressed.

A. Need for an integrated formal approach

A formal model-driven development paradigm lets engi-

neers build software and systems that are correct by construc-

tion, i.e., verified and validated. However, there exists no single

formal method, technique or tool that can be used alone for a

complete development of medical device software.

Every formal method has its strengths and limitations. We

already discussed that while some formal methods excel in ver-

ification and validation activities, some focus explicitly on cor-

rect sequential behavioral ordering. While some methods are

centered around timing and temporal constraints, some enjoy

extensive tool support or are easy to understand and use. The

dataflow-oriented frameworks already popular in avionic and

automotive domains, such as MATLAB Simulink6 and Safety-

Critical Application Development Environment (SCADE)7,

also lack sophisticated verification techniques which guarantee

correctness [34] and suffer from scalability issues [35]. A

comprehensive analysis of various formal methods is available

in [36]. An ideal formal development of medical device soft-

ware will actually be a mesh of several methods, techniques

and tools working harmoniously together to achieve a common

goal. However, interaction among different formal methods is

currently a weak link in the development chain.

B. Need for supplementary artifacts and better certification
processes

A safe and correct medical device is the result of several

artifacts supplementing each other, e.g., requirements specifi-

cations, design descriptions, and hazard analysis documents.

6http://www.mathworks.com/products/simulink/
7http://www.esterel-technologies.com/products/scade-suite/

[11] provides an overview of functional and safety require-

ments, and a high-level design of a hemodialysis machine.

This document lays down a foundation for the model-based

engineering, formal analysis and systematic implementation of

medical device software, which are highly recommended activ-

ities by experts of the domain [37]. However, further artifacts

are also necessary to complete the development process.

A very important artifact that is often required by regularity

authorities is the document containing potential risks and

hazards associated with the device. This is achieved through

hazard analysis, which is a risk assessment process that

identifies, documents and analyzes potential risks and hazards

associated with the device such as operational, environmental,

electrical, hardware, software, mechanical, chemical and usage

hazards. The most effective tools for hazard and risk analysis

are FMEA and FTA. FMEA is an inductive approach applied

at the beginning of the design phase that assumes a basic defect

in the system design, assesses its effect, and identifies potential

solutions. FTA, on the other hand, is a deductive approach to

hazard analysis. In this case, a risk or a hazard is discovered

and analyzed for effects, and the initiating faults and events.

Traditionally formal methods have a little to do with the hazard

analysis process, but the process can be supplemented by

formal approaches for improved performance and accuracy.

Regularity authorities also want to make sure that a medical

device has already achieved an acceptable assurance level

before being released. One of the ways to convince regulatory

authorities in this regard is to prove this through assurance

cases [38]. An assurance case validates the claim by supplying

a conclusive argument supported by evidence such as test

cases or program analysis. Again formal methods can provide

assistance in this process by providing a compelling, compre-

hensive and valid proof that the designed system is dependable

for the given problem and environment. For example, by using

formal methods we can show that the system specification sat-

isfies all desired safety properties, the code generation process

transforms the specification into a correct piece of code, and

the generated code satisfies all the intended properties with

specified time limits.

As medical devices are becoming unprecedentedly com-

plex, current certification processes are approaching their

limits [37]. This situation results in expensive manufacturing

costs, delays in finishing a marketable product, and increased

chances of device failures, recalls and liability costs. Iron-

ically, there exists no standard for testing, verification and

validation of software for (specialized) medical devices such as

implantable cardiac devices or extra-corporeal blood treatment

devices. Although, there are some general medical standards

like IEC 62304 for software life cycle processes, or guide-

lines like general principles of software validation8, they are

insufficient and incomplete considering the criticality of such

devices.

During the premarket evaluation, currently, FDA neither

8http://www.fda.gov/downloads/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/ucm085371.pdf
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requires the review of medical device software nor provides

specific requirements for its verification [39]. The responsibil-

ity for testing, verification and validation of medical device

software remains with device manufacturers which in turn

show that they have applied established quality assurance

techniques to certain levels of coverage. In the contemporary

quality assurance techniques, verification and validation ac-

tivities are performed quite late and often at the end of the

design phase. In this case, problems are hard, costly and time

consuming to fix.

Formal methods advocate a design strategy where design

inconsistencies and requirements errors are detected and cor-

rected in earlier stages of development. Through a formal

proof one can also show that the design is potentially defect

free, correctly implement its specification, and meets safety,

security and reliability standards. There are already some pro-

posals, such as [40] and [41], that demonstrate how safety and

reliability of medical device software can be guaranteed using

formal methods. As medical device software is becoming a

major safety concern, there is a need for better and improved

certification processes that ensure the trustworthiness and

reliability of medical devices including their software.

Human computer interaction plays a significant role in med-

ical devices. Some of the major sources for device recalls are

often attributed to flawed human computer interaction designs,

e.g., lack of guidance to control incorrect insertion of device

parameters, insufficient control to prevent incorrect dosage of

medicine, and poor user interfaces. In some cases, but not

all, validation techniques, such as animation, simulation and

Functional Mock-up Interface (FMI), can provide a clearer

picture about the design, operation and usability of medical

devices, which eventually helps in minimizing chances of

trivial errors. On the other hand, scenarios like design of an

easier process for clamping blood supply lines and making

sure that all lines are clamped as needed through the dialysis

program are, of course, beyond the jurisdiction of formal

methods.

C. Need to address cybersecurity concerns

In recent times, traditional safety-critical medical devices

are also increasingly becoming security-critical. Modern med-

ical devices are being designed as a system of systems that

is composed of heterogeneous components addressing various

networking, dynamic and uncertain environmental constraints.

For example, with the possibility of using dialysis machines

at homes, things to consider are: real-time monitoring and

intervention by a remote caregiver in case of emergency, and

easy data and information exchange between patients and

clinics. As various components of hemodialysis machines start

communicating with each other, this interoperability feature

necessitates the consideration of security issues as well such

that the proper functioning of the device is not affected by

cybersecurity and privacy threats, e.g., hacking, hijacking or

even ransomware.

In the future, we also need to focus on integrated modeling

of functional safety and cybersecurity requirements and how

to solve any possible conflict that may arise due to this

integration [42]. For example, a safety condition may require

that the medical procedure under performance is remotely

supervised by a caregiver all the time so that the caregiver can

intervene in case of a serious situation. However, a security

requirement may suggest that in case of intrusion detection,

the device can shutdown the network access completely or

run in a minimal capability mode, i.e., send out the data,

such as sensor readings and event logs, and do not accept

commands from the network. Formal methods can bridge this

gap between functional safety and cybersecurity requirements

by their integrated modeling and analysis, e.g., the approach

presented in [42] models both safety and security requirements

in a unified model, and inconsistencies and conflicts between

(safety and security) requirements can easily be spotted out

during model refinement.

V. CONCLUSION

Hemodialysis machines are safety-critical medical devices

whose design and engineering include several intricate pro-

cesses, activities and tasks. The software components of

hemodialysis machines are characterized by high complex-

ity, susceptible to frequent changes, and subject to several

stringent certification and regulatory requirements. It is an

established fact that the use of formal methods for modeling,

design and development guarantees that defects are spotted and

corrected earlier [43], thus making software safe, trustworthy

and reliable.

As far as modeling is concerned, the current state-of-

the-art of state-based formal methods is quite advanced to

fulfill the requirements of modern medical device software

development. For example, static and dynamic properties

of systems like safety, security, dependability can be ex-

pressed and verified [42], and hybrid aspects of systems can

be modeled and analyzed, be it discrete/continuous [21] or

hardware/software [44]. However, as far as a method’s tool-

support is concerned, this is not as satisfactory as its modeling

capability. For example, all tools have some weaknesses be it

automatic code generation, mechanical proving of properties,

automatic theorem proving, or state-space explosion. A de-

tailed comparison of state-based formal methods’ strengths

and weaknesses is available in [36] and maybe interesting

particularly for medical device manufacturers.

After analyzing several solutions implementing the

hemodialysis machine case study, an example of high-

confidence medical devices, we have reached to this

conclusion that despite their numerous advantages in

modeling, design and analysis, formal methods still need

to address some issues associated with their harmonious

integration and tool chains before they become mainstream

methods for the development of medical software.
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“Conceptual Modelling of Hybrid Systems,” MEDI’17, Springer, 2017,
pp. 277–290.

82


